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Proposition 1. The differential of S is
dS =pdq— H dt,

hence S satisfies the Hamilton-Jacobi equation
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Proof. Consider the integral curve 7, and the infinitesimal surface > obtained
by varying the endpoint ¢ to ¢ + dg, hence the starting point from (qo, po) to
(qo,p + dp). The integral over ¥ of da vanishes. The proposition results from
Stokes formula. O
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3. QUASIPERIODIC MOTIONS

An important and simple class of Hamiltonians is that of integrable Hamiltonians,

which do not depend on the angle 6. In such cases, the vector field becomes

. OH

0=—(r)=cst, 7=0,
5, (1)

and the flow
0H
O,r)y=0+t—(r),r|.
w0 = (0445 00
The phase space is foliated in invariant tori r = cst, in restriction to which the
flow is quasiperiodic (=linear), of frequency vector % (r).

A vector r being fixed, let a := 9% (r) € R" and consider the flow

QOtZTn%Tn, 9'—>9+ta

Lemma 4. The frequency vector a is a topological conjugacy invariant up to the
action of the discrete group GL,(Z) : if two linear flows 0 + taw and 0 + t3, with
a, B € R™, are topologically conjugate, there exists A € GL,(Z) such that = A«
(and, if the conjugacy preserves the orientation, A € SL,(Z)).

Proof. Assume two linear flows 0 +ta and 0 +t5, with «, § € R", are topologically
conjugate: there exists a homeomorphism h of T™ such that h(0+ta) = h(6) + 5.
At the expense of substituting h(6) — h(0) for A(#), we may assume that h(0) = 0.

Let H : R" — R™ be the unique lift of h such that H(0) = 0. Now, the equality
H(0 + ta) = H(6) + tf holds for § = t = 0 and, by continuity, for § € R" and
teR.

Moreover, there exists a matrix A € GL,,(Z) such that H(0+k) = H(0)+ Ak for all
6 € R" and k € Z"; A is invertible because H is. Hence V := A~'H —id : R® — R"
is a Z"-periodic vector field. In terms of V', the conjugacy hypothesis at § = 0
asserts that

L(ta+ V(ta)) = LV(0) +t5 (Vt € R),
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le.
L(V(ta) — V(0)) = t(8 — Lav).
Since the left hand side is bounded, necessarily f = La. OJ

The action of GL,(Z) is closely related to the arithmetic properties of frequency
vectors ; see [4, 2.2.3] for n = 2.

Proposition 2. The following properties are equivalent :

(1) The vector « is non resonant: k-« # 0 for all k € Z™ \ {0}

(2) The flow (p;) of the constant vector field « is ergodic: invariant continuous
functions (f(0 +ta) = f(0) for allt € R and 0 € T") are constant

(3) For every continuous function f on T", the time average of f ezists, is
constant and equals the space average of f:

1 (T

lim —/ FO+ta)dt= | fF(6)dp.
T Jo Tn

(4) Every tragectory of (yp;) is dense on T™.

More general classes of functions than continuous ones can be considered, but we
lazily stick here to the most convenient setting for our purpose. See [1, 2, 3] for
further results on ergodicity.

Proof. (1) = (2) Suppose that « is non resonant and let f € C°(T!) be invariant:
f = fop for all t. The k-th Fourier coefficient of f o ¢, is

Fopu(k) = / e~ £(6 + ta) df.
The change of variable 8 = 6 + ta shows that

f o Sot(k) — pi2mkeat A(k)

By uniqueness, for all &k € Z™\ {0} we see that f(k) =0. Hence f is constant.

(2) = (1) Conversely, suppose that k-« = 0 for some k € Z™ \ {0}. Then
f(0) = ™% is invariant and not constant, hence the flow is not ergodic.

(1) = (3) Call f the space-average of f. We will show the conclusion by taking
more and more general functions.

—If f is constant, f(0) = f trivially. If f(0) = €2 for some k € Z™\ {0}, direct
integration shows that

1 [T 1.
- / F(O+ta)dd = —ei2m0C
T Jo
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The expression k-« in the denominator is the first occurence of the so-called small
denominators, which are the source of many difficulties in perturbation theory.

— If f is a trigonometric polynomial, the same conclusion holds by linearity.

— Let now f be continuous. Let € > 0. By the theorem of Weierstrass, there is a
trigonometric polynomial P such that

max |f(0) — P(0)| <e.

T
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For such a P, we have shown that there is a time Tj such that if T" > T,
e _

‘—/ P(G—i—ta)d@—P’ge.
T Jo

Using the two latter inequalities, we see that

1 T _
’T/o f(9+ta)dt—f‘
T T
g%/o \f(9+ta)—P(9+ta)|dt+’%/0 P(9+t04)dt—P'+|P_f|§3€'

So, again %fOTf(H + ta) df tends to 0.

(3) = (1) Suppose « is resonant: k-« = 0 for some k € Z" \ {0}, and let
f(6) = ™% The space average of f equals 0, while

T
l/ pi2mk-(O+at) qp _ pi2wkd
T Jo

So there exists a non constant continuous function whose time and space averages
do not match.

(1) = (4) Suppose that one trajectory is not dense: there exist a point § € T™ and
an open ball B C T" such that the curve t — 6 + ta will never visit B. Let f be
a continuous function whose support lies inside B and whose integral is > 0. The
space average of f is > 0, while its time average is 0. Hence « is resonant.

(4) = (1) Suppose « is resonant: k-« = 0 for some k € Z™ \ {0}. We will show
that there is a small ball B centered at 6° := k/2 (mod Z™) which the trajectory
t — ta never visits. Indeed, let 6 be in such a ball B of small radius. Does there
exist t € R such that ta = 6 in T"? Equivalently, does there exist ¢ € R and
¢ € 7" such that ta = 6 + (7 Taking the dot product of the equation with k yields
O0=Fk-0+Fk-L But k-{€Z,while k-0 €]0, 1] provided the radius of B is small
enough (depending on k). This shows that there is no such ¢ € R. O

If we think for instance to two planets revloving around the Sun with frequencies
a; and ag, that the frequency vector o = (aj,as) be resonant means that the
two planets will regularly find themselves in the same relative position. Hence,
their mutual attraction, which is small due to their small masses compared to the
mass of the Sun, instead of averaging out, will pile up. This is all the more true
that the order |k| := |ki| + - - - + |kn| of the resonance is small. As a general rule,
perturbation theory rather studies what happens away from resonances, and at
some distance away from them in the phase space (all the farther that they have
low order).
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